

Modelling Electromagnetic Heating

David J. Brown

Los Alamos Research Park January 23, 2003

Overview

- Whitney finite elements and their properties
- Solving Maxwell's curl equations using Whitney elements
- Treating material equations
- Results to date
- Future goals

EM Goals

- Create a general EM solver which can be used from DC to microwave frequencies
 - · Induction heating, eventually with fluid flow
 - Mold preheating
- Be able to extract resistive Joule heat generated electromagnetically and feed it back to Telluride's thermodynamics package
- Be able to calculate Lorentz forces on any charged particles or currents and feed it back to Telluride's flow package

Maxwell's Equations

$$\nabla \times \vec{E} = \frac{-\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$$

Why Whitney Elements?

- In hyperbolic problems, such as EM, correct specification of boundaries imperative (Cauchy boundary conditions necessary)
- Scalar node elements have difficulties representing surface normals
- Vector elements needed; Whitney elements give extra benefit of making divergence and curl relations easy

Face- and Edge-Finite Elements

- Edge elements have *circulation* 1 on an edge, circulation going linearly to 0 at adjacent edges
 - Pure circulations have no divergences
- Face elements have flux 1 on a face, flux going linearly to 0 at adjacent faces
 - Pure fluxes have no vorticity
- These properties solve false divergence issues
- Both are vector elements with direction; face elements give natural way to represent directed boundaries between materials

Tet with Face and Edge Elements

- We use a general tet mesh
- Shown is one element, with orientations of representative face and edge elements (the b- flux and the e- circulation)

Whitney Element Setup

$$\begin{split} \vec{W_{i,j}^{(1)}} &= \phi_i \vec{\nabla} \phi_j - \phi_j \vec{\nabla} \phi_i \\ \vec{W_{i,j,k}^{(2)}} &= 2 \phi_i (\vec{\nabla} \phi_j \times \vec{\nabla} \phi_k) + 2 \phi_j (\vec{\nabla} \phi_k \times \vec{\nabla} \phi_i) + \\ 2 \phi_k (\vec{\nabla} \phi_i \times \vec{\nabla} \phi_j) \end{split}$$

 ϕ_i is node element associated with node i; with value 1 at node i, going linearly to 0 at adjacent nodes, 0 everywhere else

Finite Element (TD) Codes

- Uses only one grid
- Traditional node elements equal to one at grid node, going linearly to zero at all adjacent nodes, and zero thereafter (2- D linear finite element at left)

Code Construction

Let
$$\vec{E} = \sum_{i,j} e_{i,j} \vec{W}_{i,j}^{(1)}$$

 $\vec{H} = \sum_{i,j} h_{i,j} \vec{W}_{i,j}^{(1)}$
 $\vec{D} = \sum_{i,j,k} d_{i,j,k} \vec{W}_{i,j,k}^{(2)}$
 $\vec{B} = \sum_{i,j,k} b_{i,j,k} \vec{W}_{i,j,k}^{(2)}$
 $\vec{j} = \sum_{i,j,k} J_{i,j,k} \vec{W}_{i,j,k}^{(2)}$

- W⁽¹⁾ s are edge elements with circulation 1, indo by ending, then beginning node (s over pairs of tet n
- W⁽²⁾ s are face elements with flu indexed counterclockwise (sums triplets of tet node

Maxwell's Equations

$$\int d\vec{S} \cdot \vec{B} = -\oint d\vec{l} \cdot \vec{E}$$

$$\int d\vec{S} \cdot \vec{D} = \oint d\vec{l} \cdot \vec{H} - \int d\vec{S} \cdot \vec{J}$$

Specifying face defined by $\{l,m,n\}$, properties of face & edge elements reduce these equations to

$$\dot{b}^{l,m,n} = -(e^{l,m} + e^{m,n} + e^{n,l})$$

$$\dot{d}^{l,m,n} = h^{l,m} + h^{m,n} + h^{n,l} - J^{l,m,n}$$

Coding Material Equations

- Maxwell's equations uncoupled; we need relations between B and H, and D and E.
- We first try to code linear materials, giving the relations: $\vec{B} = \mu \vec{H}$, $\vec{D} = \epsilon \vec{E}$
- There are several ways to code these equations, depending on what physical or geometric principles are important to your problem
- We coded the linear material equations to preserve energy

Energy Conservation and Materials

To find coefficients for H and E given those for B and D, Multiply both sides of material equations by an arbitrary edge element and integrate the entire volume of the mesh:

$$\sum_{i,j} h_{i,j} \int dV_{mesh} \vec{W}_{i,j}^{(1)} \cdot \vec{W}_{l,m}^{(1)} = \sum_{i,j,k} b_{i,j,k} \int \frac{dV_{mesh}}{\mu} \vec{W}_{i,j,k}^{(2)} \cdot \vec{W}_{l,m}^{(1)}$$

$$\sum_{i,j} e_{i,j} \int dV_{mesh} \vec{W}_{i,j}^{(1)} \cdot \vec{W}_{l,m}^{(1)} = \sum_{i,j,k} d_{i,j,k} \int \frac{dV_{mesh}}{\epsilon} \vec{W}_{i,j,k}^{(2)} \cdot \vec{W}_{l,m}^{(1)}$$

Geometric Factors in Material Equations

Discretizing the mesh volume into tet cells, placing material properties inside tet cells, we define:

$$S_{i,j}^{l,m} \equiv (c \Delta t)^{-1} \sum_{tet \, v} \int dV_{v} \vec{W}_{i,j}^{(1)} \cdot \vec{W}_{l,m}^{(1)}$$

$$M_{i,j}^{r,s,t} \equiv \mu_{0} \sum_{tet \, v} \int \frac{dV_{v}}{\mu_{v}} \vec{W}_{i,j}^{(1)} \cdot \vec{W}_{r,s,t}^{(2)}$$

$$P_{i,j}^{r,s,t} \equiv \epsilon_{0} \sum_{tet \, v} \int \frac{dV_{v}}{\epsilon_{...}} \vec{W}_{i,j}^{(1)} \cdot \vec{W}_{r,s,t}^{(2)}$$

Material Equations & Energy Conservation

With matrices defined on last slide, we have:

$$\vec{\vec{S}}(\mu_{\scriptscriptstyle 0} c \, \Delta \, t \, \vec{h}) = \vec{\vec{M}} \, \vec{b}; \quad \vec{\vec{S}}(\Delta \, t \, \vec{e}) = \vec{\vec{P}}(\mu_{\scriptscriptstyle 0} c \, \vec{d})$$

where vectors are vectors of expansion coefficients.

Premultiplying by circulation expansion coefficients:

$$\vec{h}^T \vec{\ddot{S}}(\mu_0 c \Delta t \vec{h}) = \mu_0 \int dV_{mesh} H^2 = \vec{h}^T \vec{\ddot{M}} \vec{b} = \mu_0 \int dV_{mesh} \frac{\vec{B} \cdot \vec{H}}{\mu}$$

$$\vec{e}^T \vec{\ddot{S}}(\Delta t \vec{e}) = 1/c \int dV_{mesh} E^2 = \vec{e}^T \vec{\ddot{P}}(\mu_0 c \vec{d}) = 1/c \int dV_{mesh} \frac{\vec{D} \cdot \vec{E}}{\epsilon}$$

shows energy is conserved across this projection.

Properties of Equations

Combining material eqns. coded as

$$\frac{d}{dt}\vec{Y} = -\alpha\vec{Y}$$

$$\vec{Y} = \left[\vec{\vec{S}}(\mu_0 c \Delta t \vec{h}) - \vec{\vec{M}} \vec{b}\right]^2 \text{ or } \left[\vec{\vec{S}}(\Delta t \vec{e}) - \vec{\vec{P}}(\mu_0 c \vec{d})\right]^2$$

with Maxwell's curl eqns. where \vec{C} is discrete curl:

$$\vec{b} = -\vec{C}\vec{e} \quad \vec{d} = \vec{C}\vec{h} - \vec{J}$$

makes a complete system of equations to be coded.

- * S is N_{edges} squared large invertable
- * M and P are $N_{faces} \times N_{edges}$ large not square or invertable
- * C is $N_{edges} \times N_{faces}$ large not square or invertable
- * Time dependence only appears in Maxwell's eqns.

Time- Stepping in Code

Theta method timestepping:

$$\Delta t \dot{x} \Rightarrow x_{n+1} - x_n$$
$$x \Rightarrow 9 x_{n+1} + (1 - 9) x_n$$

 $\cdot 9$ is a parameter which measures the amount of implicitness or explicitness in the code.

 $\theta = 1$ is fully implicit. $\theta = 0$ is fully explicit.

 $\cdot 9 = 1/2$ is the Crank-Nicolson or trapezium method. This has no amplitude error and conserves energy.

Results and Issues

- Currently use GMRes to solve system after discretizing differential equations with theta method.
- Setting $E_z = 1$ and $B_z = 1$ initially, we try to see if code keeps these static fields stable.
- Preliminary tests show no instabilities down to 1 ppm and we can achieve timesteps of hundreds of Courant conditions on 15352- element cylindrical mesh with α = 1.

Second- order Solver

Checking if positive definite matrices affect stability, combine both Maxwell eqns. with both material eqns. to get two second-order DE's in one field:

$$c \Delta t \vec{S} \vec{e} + \frac{c}{\Delta t} \vec{L} \vec{e} = \frac{-1}{\epsilon} \vec{P} \vec{j}$$

$$c \Delta t \vec{S} \vec{h} + \frac{c}{\Delta t} \vec{L} \vec{h} = \frac{c}{4\Delta t} \vec{L} \vec{C}^T \vec{j}$$

$$L_e^{e'} \equiv \frac{\Delta t}{c} \sum_{tetv} \int \frac{dV_v}{\mu_v \epsilon_v} curl \vec{W}_e^{(1)} \cdot curl \vec{W}_{e'}^{(1)}$$

2'nd Order Code Setup

For an arbitrary vector of circulation coefficients \vec{c} and an arbitrary vector of circulation sources \vec{s} setting we can reduce the 2'nd order DE:

$$(\Delta t)^2 \vec{S} \ddot{\vec{c}} + \vec{L} \vec{c} = \vec{s}$$

to a system of 1'st order DE's by setting $\vec{v} \equiv \dot{\vec{c}}$

$$\begin{bmatrix} \vec{t} & 0 \\ 0 & \Delta t \vec{S} \end{bmatrix} \begin{bmatrix} \dot{\vec{c}} \\ \Delta t \dot{\vec{v}} \end{bmatrix} = \begin{bmatrix} 0 & (\Delta t)^{-1} \vec{I} \\ -\vec{L} & 0 \end{bmatrix} \begin{bmatrix} \vec{c} \\ \Delta t \vec{v} \end{bmatrix} + \begin{bmatrix} 0 \\ \vec{s} \end{bmatrix}$$

2'nd-Order Solver Results

- We apply the theta method to this differential matrix equation, invert the matrix on the lefthand side and run the static field problem on this field
- No instability on the 72- element mesh and, we can achieve timesteps of hundreds of Courant conditions on 15352- element mesh.
- Unusual stability of $\theta = 0$, boundary conditions less transparent, and matrices twice as large as first-order code.

{yàDg•eÆv€¬À□ù‰|cø" □□Ôμ□□hþ!Ö□¥£èé:ÛYÙJÓ□iT+;ÊÊœm□□□0yÜs′q÷ú?...üKñ7þ□íkJ′²Óô‹"úMŒjöâñ¡*òÊ...

Future Directions

- More complex tests waves and magnetic dipoles
 - Waves need resistance, boundary conditions, and packet construction on unstructured meshes
 - Dipoles need fields generated solely from currents
- Add resistance via Ohm's Law ($j = \sigma E$) to give electromagnetic energy lost (σE^2)
- Integration with rest of truchas, Parallelization, static electric charges & fields, non- tet meshes ...

Finite element setup

For basis on element:

$$\begin{split} \phi_{e,i} = & (\alpha_{e,i} + \beta_{e,i} \, x + \delta_{e,i} \, y + \zeta_{e,i} \, z) / 6 \, V_e \\ & \begin{bmatrix} 1 & x_{e,l} & y_{e,l} & z_{e,l} \\ 1 & x_{e,2} & y_{e,2} & z_{e,2} \\ 1 & x_{e,3} & y_{e,3} & z_{e,3} \\ 1 & x_{e,4} & y_{e,4} & z_{e,4} \end{bmatrix} \text{ then:} \\ & \alpha_{e,i} = & cof(A_{i,l}), \quad \beta_{e,i} = & cof(A_{i,2}), \quad \delta_{e,i} = & cof(A_{i,3}) \\ & \zeta_{e,i} = & cof(A_{i,4}), \quad V_e = & det(A) / 6 \\ & \text{node 1, element e at} \, (x_{e,l}, y_{e,l}, z_{e,l}), \text{ etc.} \end{split}$$

 $\Box \text{``E\S} \text{`} \text{`$} \text{`$} \text{`$} \text{`$} \text{``} \text{``CW} \text{``It} \text{``w'} \text{``L} \text{``BBB'}, \text{``$} \text{`$} \text{``It} \text{``A} \text{``H} \text{`A} \text{`O} \text{``d} \text{``ey} \text{``w} \ \Box \text{`i} \text{``a}^2 \Box \text{`$} \text{w'E} f, \Box \text{``z} (\Box \text{CW} \text{``i} \text{`f} \text{`w'} \text{`w'} \text{``y'} f \text{`u} \text{`a} - \text{`U} \text{``c} \text{``i} \text{`ZE} \ @*r \text{`YU}^2 \text{``s'} \text{``w'} \text{``s'} \text{``s'} \text{``w'} \text{``s'} \text{``s'} \text{``w'} \text{``s'} \text{``w'} \text{``s'} \text{`s'} \text{``s'} \text{``s'} \text{``s'} \text{``s'} \text{``s'} \text{``s'} \text{``s'} \text{`s$

Two-Field Solver

Premultiply the Maxwell curl equations by \vec{M} and \vec{P} :

$$\vec{\vec{M}} \, \vec{\vec{b}} = \vec{\vec{S}} (\mu_0 c \, \Delta t \, \vec{h}) = -\vec{\vec{M}} \, \vec{\vec{C}} \, \vec{e}$$

$$\vec{\vec{P}} (\mu_0 c \, \vec{d}) = \vec{\vec{S}} (\Delta t \, \vec{e}) = \vec{\vec{P}} \, \vec{\vec{C}} (\mu_0 c \, \vec{h}) - \mu_0 c \, \vec{\vec{P}} \, \vec{J}$$

In matrix form, and applying theta method gives:

$$\begin{bmatrix} \vec{\ddot{S}} & -9\vec{P}\vec{\ddot{C}} \\ 9\vec{M}\vec{\ddot{C}} & \vec{\ddot{S}} \end{bmatrix} \begin{bmatrix} e_{n+1} \\ \mu_0 c h_{n+1} \end{bmatrix} = \begin{bmatrix} \vec{\ddot{S}} \\ (9-1)\vec{\ddot{M}}\vec{\ddot{C}} & \vec{\ddot{S}} \end{bmatrix} \begin{bmatrix} (1-9)\vec{\ddot{P}}\vec{\ddot{C}} \\ (1-9)\vec{\ddot{P}}\vec{\ddot{C}} \end{bmatrix} \begin{bmatrix} \vec{e}_n \\ \mu_0 c \vec{h}_n \end{bmatrix} + \mu_0 c \begin{bmatrix} \vec{\ddot{P}}\vec{\ddot{J}} \\ \vec{\ddot{P}}\vec{\ddot{J}} \end{bmatrix}$$

Results and Issues w/2- Field Solver

- Once again, we invert the matrix on the left-hand side, and try to keep static fields constant.
- Unstable for 72- element cube mesh, better results for 15352- element cylinder mesh.
- Can get up to about 10 Courant conditions quickly and stably for implicit cases and θ = 1,
 2/3 of this for θ = ½
- We can show MC and PC are symmetric with zero trace - not positive definite

Treating Linear Materials

$$\vec{B} = \mu \vec{H}, \quad \vec{D} = \epsilon \vec{E}, \quad \text{become}$$

$$\sum_{i,j} h^{i,j} \vec{W}_{i,j}^{(1)} = \sum_{i,j,k} (b^{i,j,k}/\mu) \vec{W}_{i,j,k}^{(2)}$$

$$\sum_{i,j} e^{i,j} \vec{W}_{i,j}^{(1)} = \sum_{i,j,k} (d^{i,j,k}/\epsilon) \vec{W}_{i,j,k}^{(2)}$$
Integrating across edge $\{m,n\}$:
$$h^{m,n} = \sum_{i,j,k} (b^{i,j,k}/\mu) \int dl_{m,n}^{\uparrow} \cdot \vec{W}_{i,j,k}^{(2)}$$

$$e^{m,n} = \sum_{i,j,k} (d^{i,j,k}/\epsilon) \int dl_{m,n}^{\uparrow} \cdot \vec{W}_{i,j,k}^{(2)}$$

ÌA%